A Parametric Study for Vibration Analysis of Composite Cylindrical Shell Resting under Elastic Foundation: Analytical and Numerical Methods

Authors

  • J. Eskandari Jam Composite Materials & Technology Center, Malek-e-Ashtar University of Technology
  • M. Noorabadi Composite Materials & Technology Center, Malek-e-Ashtar University of Technology
  • M. Rahnama Composite Materials & Technology Center, Malek-e-Ashtar University of Technology
  • N. Namdaran Composite Materials & Technology Center, Malek-e-Ashtar University of Technology
Abstract:

The aim of this study is to investigatethe effective parameters on vibrations of circular cylindrical shells with fixed rotary speed andresting elastic foundation by means of analytical and finite element numerical simulation. First, the governing equations are derived using the theory of Donnell, considering the centrifugal forces,Coriolis acceleration, and the initial annular tension. Then, the analytical solution for cylindrical shells isintroduced under simply supported conditions. Further, the effect of parameters such as therotational speed of the shell, its lay-up, fiber angle, and the stiffness of the elastic foundation on the values of natural frequency and the critical velocity of the shells are studied. The analytical solution results are in good compatibility with the results achieved from the finite element method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Semi-analytical Approach for Free Vibration Analysis of Variable Cross-Section Beams Resting on Elastic Foundation and under Axial Force

in this paper, free vibration of an Euler-Bernoulli beam with variable cross-section resting on elastic foundation and under axial tensile force is considered. Beam’s constant height and exponentially varying width yields variable cross-section. The problem is handled for three different boundary conditions: clamped-clamped, simply supported-simply supported and clamp-free beams. First, the equ...

full text

Numerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation

Free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elasticfoundation is studied using differential transform method (DTM) as a part of a calculation procedure. First,the governing differential equations of beam are derived in a general form considering the shear-freeboundary conditions (zero shear stress conditions at the top and bottom of a beam). ...

full text

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

full text

numerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation

free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elasticfoundation is studied using differential transform method (dtm) as a part of a calculation procedure. first,the governing differential equations of beam are derived in a general form considering the shear-freeboundary conditions (zero shear stress conditions at the top and bottom of a beam). ...

full text

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

full text

Buckling and Free Vibration Analysis of Fiber Metal-laminated Plates Resting on Partial Elastic Foundation

This research presents, buckling and free vibration analysis of fiber metal-laminated (FML) plates on a total and partial elastic foundation using the generalized differential quadrature method (GDQM). The partial foundation consists of multi-section Winkler and Pasternak type elastic foundation. Taking into consideration the first-order shear deformation theory (FSDT), FML plate is modeled and...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 2

pages  13- 22

publication date 2017-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023